Respuesta :

Answer:

  [tex]\frac{\frac{4}{5}}{\frac{1}{3}+\frac{1}{5}-\frac{3}{5}}=-12[/tex]

Step-by-step explanation:

Considering the expression

[tex]\frac{\frac{4}{5}}{\frac{1}{3}+\frac{1}{5}-\frac{3}{5}}[/tex]

Solution Steps:

[tex]\frac{\frac{4}{5}}{\frac{1}{3}+\frac{1}{5}-\frac{3}{5}}[/tex]

as

[tex]\mathrm{Combine\:the\:fractions\:}\frac{1}{5}-\frac{3}{5}:\quad -\frac{2}{5}[/tex]

so

[tex]=\frac{\frac{4}{5}}{\frac{1}{3}-\frac{2}{5}}[/tex]    

[tex]\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}[/tex]

[tex]=\frac{4}{5\left(\frac{1}{3}-\frac{2}{5}\right)}[/tex]

join  [tex]\frac{1}{3}-\frac{2}{5}:\quad -\frac{1}{15}[/tex]

so

[tex]=\frac{4}{5\left(-\frac{1}{15}\right)}[/tex]

[tex]\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a[/tex]

[tex]=\frac{4}{-5\cdot \frac{1}{15}}[/tex]

[tex]\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{a}{-b}=-\frac{a}{b}[/tex]

[tex]=-\frac{4}{5\cdot \frac{1}{15}}[/tex]

[tex]\mathrm{Multiply\:}5\cdot \frac{1}{15}\::\quad \frac{1}{3}[/tex]

so

[tex]=-\frac{4}{\frac{1}{3}}[/tex]

[tex]\mathrm{Simplify}\:\frac{4}{\frac{1}{3}}:\quad \frac{12}{1}[/tex]

so

[tex]=-\frac{12}{1}[/tex]

[tex]\mathrm{Apply\:rule}\:\frac{a}{1}=a[/tex]

[tex]=-12[/tex]

Therefore

                  [tex]\frac{\frac{4}{5}}{\frac{1}{3}+\frac{1}{5}-\frac{3}{5}}=-12[/tex]