Answer:
see the explanation
Step-by-step explanation:
we have
[tex]7(a+b)=7(y-x)[/tex]
simplify
[tex](a+b)=(y-x)[/tex] -----> equation A
[tex]5(3x+y)=x+3[/tex]
[tex]15x+5y=x+3\\14x+5y=3[/tex]
Rewrite
[tex]3=14x+5y[/tex] -----> equation B
Solve by elimination method
Multiply equation A by 14 both sides
[tex]14(a+b)=14y-14x[/tex] -----> equation C
Adds equation B and equation C
[tex]3=14x+5y\\14(a+b)=14y-14x\\-----------\\3+14(a+b)=5y+14y\\3+14(a+b)=19y[/tex]
[tex]y=\frac{3+14(a+b)}{19}[/tex]
Find the value of x
substitute the value of y in the equation B
[tex]3=14x+5(\frac{3+14(a+b)}{19})[/tex]
[tex]14x=3-5(\frac{3+14(a+b)}{19})[/tex]
[tex]x=\frac{3}{14}-\frac{5}{14}(\frac{3+14(a+b)}{19})[/tex]