A 1.2 W point source emits sound waves isotropically. Assuming that the energy of the waves is conserved, find the intensity (a)1.6 m from the source and (b)2.2 m from the source.

Respuesta :

Answer:

(a) [tex]I = 3.7\times 10^{-2}\ W/m^{2}[/tex]

(b) [tex]I = 1.9\times 10^{-2}\ W/m^{2}[/tex]

Explanation:

Given:

Point source [tex]P_{b}=1.2\ W[/tex]

Distance from source Part a [tex]L = 1.6\ m[/tex]

Distance from source Part b [tex]L = 2.2\ m[/tex]

Solution:

Part (a)

Using intensity formula at distance L from an isotropic point.

[tex]I = \frac{P_{b}}{4\pi(L)^{2}}[/tex]  -------------------(1)

Substitute [tex]L = 1.6\ m[/tex] and [tex]P_{b}=1.2\ W[/tex] in equation 1..

[tex]I = \frac{1.2}{4\times 3.14(1.6)^{2}}[/tex]

[tex]I = \frac{1.2}{32.15}[/tex]

[tex]I = 0.037\ W/m^{2}[/tex]

[tex]I = 3.7\times 10^{-2}\ W/m^{2}[/tex]

Part (b)

Substitute [tex]L = 2.2\ m[/tex] and [tex]P_{b}=1.2\ W[/tex] in equation 1.

[tex]I = \frac{1.2}{4\times 3.14(2.2)^{2}}[/tex]

[tex]I = \frac{1.2}{60.79}[/tex]

[tex]I = 0.019\ W/m^{2}[/tex]

[tex]I = 1.9\times 10^{-2}\ W/m^{2}[/tex]

Therefore, the intensity at distance 1.6 m from the source:

[tex]I = 1.9\times 10^{-2}\ W/m^{2}[/tex].

And, the intensity at distance 2.2 m from the source:

[tex]I = 1.9\times 10^{-2}\ W/m^{2}[/tex].