Respuesta :

Answer:

[tex]P\left(\frac{5}{2},\frac{5}{2}\right)[/tex]  is the point that partitions line segment ((1,1),(6,6)) into a 3:7 ratio.

Step-by-step explanation:

Let AB is the line segment with A having the coordinates (1, 1) and B having the coordinates (6, 6)

Let us consider the point P(x, y) partitions the line segment AB into a ratio 3:7

Considering the formula to find the coordinates of P(x, y)

  • [tex]x=\frac{m_1x_2+m_2x_1}{m_1+m_2}[/tex]
  • [tex]y=\frac{m_1y_2+m_2y_1}{m_1+m_2}[/tex]

From the data,

[tex]m_1=3,\:\:m_2=7,\:\:x_1=1,\:\:x_2=6,\:\:y_1=1,\:\:y_2=6[/tex]

so

[tex]x=\frac{m_1x_2+m_2x_1}{m_1+m_2}[/tex]

[tex]x=\frac{\left(3\right)\left(6\right)+\left(7\right)\left(1\right)}{\left(3+7\right)}[/tex]

[tex]x=\frac{25}{3+7}[/tex]

[tex]x=\frac{25}{10}[/tex]

[tex]x=\frac{5}{2}[/tex]

also

[tex]y=\frac{m_1y_2+m_2y_1}{m_1+m_2}[/tex]

[tex]y=\frac{\left(3\right)\left(6\right)+\left(7\right)\left(1\right)}{\left(3+7\right)}[/tex]

[tex]\:y=\frac{25}{3+7}[/tex]

[tex]y=\frac{25}{10}[/tex]

[tex]y=\frac{5}{2}[/tex]

Therefore, [tex]P\left(\frac{5}{2},\frac{5}{2}\right)[/tex]  is the point that partitions line segment ((1,1),(6,6)) into a 3:7 ratio.