(a) If [tex]A,B,C[/tex] are mutually exclusive, then
[tex]P(A\cap B)=P(A\cap C)=P(B\cap C)=P(A\cap B\cap C)=0[/tex]
so we have
[tex]P(A\cup B\cup C)=P(A)+P(B)+P(C)=\dfrac{47}{60}[/tex]
(b) If [tex]A,B,C[/tex] are mutually independent, then
[tex]P(A\cap B)=P(A)P(B),[/tex]
[tex]P(A\cap C)=P(A)P(C),[/tex]
[tex]P(B\cap C)=P(B)P(C),[/tex]
[tex]P(A\cap B\cap C)=P(A)P(B)P(C)[/tex]
so that
[tex]P(A\cup B\cup C)=P(A)+P(B)+P(C)-(P(A\cap B)+P(A\cap B)+P(B\cap C))+P(A\cap B\cap C)[/tex]
[tex]P(A\cup B\cup C)=\dfrac{47}{60}-\left(\dfrac1{12}+\dfrac1{15}+\dfrac1{20}\right)+\dfrac1{60}[/tex]
[tex]P(A\cup B\cup C)=\dfrac35[/tex]