Part a: The value of R when [tex]A=5[/tex] is [tex]3.6[/tex]
Part b: The value of A when [tex]R=9[/tex] is [tex]2[/tex]
Explanation:
It is given that R is inversely proportional to A.
Hence, it can be written as [tex]R=\frac{k}{A}[/tex]
Also, it is given that [tex]R=12[/tex] and [tex]A=1.5[/tex]
Substituting these values in [tex]R=\frac{k}{A}[/tex], we have,
[tex]12=\frac{k}{1.5}[/tex]
[tex]18=k[/tex]
Thus, the value of K is [tex]18=k[/tex]
Part a: To determine the value of R when [tex]A=5[/tex]
Now, substituting [tex]A=5[/tex] and [tex]k=18[/tex] in [tex]R=\frac{k}{A}[/tex], we get,
[tex]R=\frac{18}{5}[/tex]
[tex]R=3.6[/tex]
Thus, the value of R is [tex]R=3.6[/tex]
Part b: To determine the value of A when [tex]R=9[/tex]
Now, substituting [tex]R=9[/tex] and [tex]k=18[/tex] in [tex]R=\frac{k}{A}[/tex], we get,
[tex]9=\frac{18}{A}[/tex]
[tex]A=\frac{18}{9}[/tex]
[tex]A=2[/tex]
Thus, the value of A is [tex]A=2[/tex]