Respuesta :

Part a: The value of R when [tex]A=5[/tex] is [tex]3.6[/tex]

Part b: The value of A when [tex]R=9[/tex] is [tex]2[/tex]

Explanation:

It is given that R is inversely proportional to A.

Hence, it can be written as [tex]R=\frac{k}{A}[/tex]

Also, it is given that [tex]R=12[/tex] and [tex]A=1.5[/tex]

Substituting these values in [tex]R=\frac{k}{A}[/tex], we have,

[tex]12=\frac{k}{1.5}[/tex]

[tex]18=k[/tex]

Thus, the value of K is [tex]18=k[/tex]

Part a: To determine the value of R when [tex]A=5[/tex]

Now, substituting [tex]A=5[/tex] and [tex]k=18[/tex] in [tex]R=\frac{k}{A}[/tex], we get,

[tex]R=\frac{18}{5}[/tex]

[tex]R=3.6[/tex]

Thus, the value of R is [tex]R=3.6[/tex]

Part b: To determine the value of A when [tex]R=9[/tex]

Now, substituting [tex]R=9[/tex] and [tex]k=18[/tex] in [tex]R=\frac{k}{A}[/tex], we get,

[tex]9=\frac{18}{A}[/tex]

[tex]A=\frac{18}{9}[/tex]

[tex]A=2[/tex]

Thus, the value of A is [tex]A=2[/tex]