Answer:
Part I
p(x=1)=0.0000
p(x=2)=0.0000
Part II
p(x)=0.11
Step-by-step explanation:
For Poisson distribution:
[tex]p(X=x)=e^-m\frac{m^x}{x!}[/tex]
Where m=mean, x=number of events
Given x=1, and mean,m=28
[tex]p(X=1)=\frac{e^{-28} *28^1}{1!}\\p(X=1)=0.0000[/tex]
For x=2 and mean,m=28
[tex]p(X=2)=\frac{e^{-28} *28^2}{2!}\\p(X=2)=0.0000[/tex]
For Uniform Distribution
Time interval 10 and 19 minutes is 9
Time interval between 15 and 16 minutes is 1
Therefore:-
[tex]p(x)=\frac{1}{9}\\p(x)=0.1111\\p(x)=0.11 \ (2d.p)[/tex]