Respuesta :

Option A : [tex]$x=-7$[/tex] is the equation of the vertical asymptote

Option D : [tex]y=-8[/tex] is the equation of the horizontal asymptote

Explanation:

The given function is [tex]$f(x)=\frac{5}{x+7}-8$[/tex]

The vertical asymptote of the function can be determined by equating the numerator to zero.

Thus, we have,

[tex]x+7=0[/tex]

     [tex]x=-7[/tex]

Thus, the vertical asymptote of the function is [tex]x=-7[/tex]

Hence, Option A is the correct answer.

Now, we shall determine the horizontal asymptote of the function.

If [tex]$\lim\ {x \rightarrow \infty}[/tex], then the function [tex]$f(x)=\frac{5}{x+7}-8$[/tex] becomes,

[tex]$\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{5}{x+7}-8=-8[/tex]

Thus, the horizontal asymptote of the function is [tex]y=-8[/tex]

Hence, Option D is the correct answer.