Respuesta :

The value of [tex]f(6)[/tex] is [tex]f(6)=60[/tex]

Explanation:

The equation is [tex]f(n+1)=f(n)-8[/tex]

It is given that [tex]f(1)=100[/tex]

Now, we shall determine the value of [tex]f(6)[/tex]

Let us substitute [tex]n=1,2,3,4,5[/tex] in the equation [tex]f(n+1)=f(n)-8[/tex]

For [tex]n=1[/tex],

[tex]\begin{aligned}f(1+1) &=f(1)-8 \\f(2) &=100-8 \\&=92\end{aligned}[/tex]

Thus, when [tex]n=1[/tex][tex]f(2)=92[/tex]

For [tex]n=2[/tex],

[tex]\begin{aligned}f(2+1) &=f(2)-8 \\f(3) &=92-8 \\&=84\end{aligned}[/tex]

Thus, when [tex]n=2[/tex] ⇒ [tex]f(3)=84[/tex]

For [tex]n=3[/tex] ,

[tex]\begin{aligned}f(3+1) &=f(3)-8 \\f(4) &=84-8 \\&=76\end{aligned}[/tex]

Thus, when [tex]n=3[/tex] ⇒ [tex]f(4)=76[/tex]

For [tex]n=4[/tex],

[tex]\begin{aligned}f(4+1) &=f(4)-8 \\f(5) &=76-8 \\&=68\end{aligned}[/tex]

Thus, when [tex]n=4[/tex] ⇒ [tex]f(5)=68[/tex]

For [tex]n=5[/tex],

[tex]\begin{aligned}f(5+1) &=f(5)-8 \\f(6) &=68-8 \\&=60\end{aligned}[/tex]

Thus, when [tex]n=5[/tex] ⇒ [tex]f(6)=60[/tex]

Hence, the value of [tex]f(6)[/tex] is [tex]f(6)=60[/tex]