Redo the experiment by clicking on Reset Experiment. Add Ca(NO3)2 to 40 g of Na2CO3 and determine at what point the masses of the two reactants react "evenly." That is, how many grams of Ca(NO3)2 must be added to just consume the 40 g Na2CO3 initially available?

Respuesta :

Answer : The mass of [tex]Ca(NO_3)_2[/tex]  added must be, 61.9 grams

Explanation : Given,

Mass of [tex]Na_2CO_3[/tex] = 40 g

Molar mass of [tex]Na_2CO_3[/tex] = 105.9 g/mol

First we have to calculate the moles of [tex]Na_2CO_3[/tex].

[tex]\text{ Moles of }Na_2CO_3=\frac{\text{ Mass of }Na_2CO_3}{\text{ Molar mass of }Na_2CO_3}=\frac{40g}{105.9g/mole}=0.378moles[/tex]

Now we have to calculate the moles of [tex]MgO[/tex]

The balance chemical reaction will be:

[tex]Ca(NO_3)_2+Na_2CO_3\rightarrow CaCO_3+2NaNO_3[/tex]

From the balanced reaction we conclude that

As, 1 mole of [tex]Na_2CO_3[/tex] react with 1 mole of [tex]Ca(NO_3)_2[/tex]

So, 0.378 mole of [tex]Na_2CO_3[/tex] react with 0.378 mole of [tex]Ca(NO_3)_2[/tex]

Now we have to calculate the mass of [tex]Ca(NO_3)_2[/tex]

[tex]\text{ Mass of }Ca(NO_3)_2=\text{ Moles of }Ca(NO_3)_2\times \text{ Molar mass of }Ca(NO_3)_2[/tex]

Molar mass of [tex]Ca(NO_3)_2[/tex] = 164 g/mol

[tex]\text{ Mass of }Ca(NO_3)_2=(0.378moles)\times (164g/mole)=61.9g[/tex]

Thus, the mass of [tex]Ca(NO_3)_2[/tex]  added must be, 61.9 grams