Respuesta :
Answer :
(1) The initial rate when [A] is halved and [B] is tripled is, 0.198 M/s
(2) The initial rate when [A] is tripled and [B] is halved is, 0.0440 M/s
Explanation:
The given rate law expression is:
[tex]Rate=k[A][B]^2[/tex]
Now we have to determine the initial rate when [A] is halved and [B] is tripled.
The new rate law expression will be:
[tex]Rate=k\times (\frac{[A]}{2})\times (3\times [B])^2[/tex]
[tex]Rate=k\times (\frac{[A]}{2})\times 9\times [B]^2[/tex]
[tex]Rate=k\times (\frac{9}{2})\times [A]\times [B]^2[/tex]
Given:
Initial rate = 0.0440 M/s
As, Initial rate = [tex]k[A][B]^2[/tex] = 0.0440 M/s
Thus,
[tex]Rate=(\frac{9}{2})\times 0.0440M/s[/tex]
[tex]Rate=0.198M/s[/tex]
Now we have to determine the initial rate when [A] is tripled and [B] is halved.
The new rate law expression will be:
[tex]Rate=k\times (\frac{[B]}{2})\times (3\times [A])^2[/tex]
[tex]Rate=k\times (\frac{[B]}{2})\times 9\times [A]^2[/tex]
[tex]Rate=k\times (\frac{9}{2})\times [A]\times [B]^2[/tex]
Given:
Initial rate = 0.00978 M/s
As, Initial rate = [tex]k[A][B]^2[/tex] = 0.00978 M/s
Thus,
[tex]Rate=(\frac{9}{2})\times 0.00978M/s[/tex]
[tex]Rate=0.0440M/s[/tex]