Answer:
[tex]q=4.013\:\:kW\\\\T_1=278.91\:\:^{\circ}C\\\\T_2=275.82\:\:^{\circ}C[/tex]
Explanation:
[tex]R_{conv,1}=(h_1\pi D_1L)^{-1}=(50*0.25*2)^{-1}=0.01273\:\:K/W\\\\R_{conv,2}=(h^2*4wL)^{-1}=(4*4*1)^{-1}=0.0625\:\:K/W\\\\R_{cond(2D)}=(Sk)^{-1}=(8.59*150)^{-1}=0.00078\:\:K/W[/tex]
So, heat rate can be calculated as follows:
[tex]q=\frac{T_{\infty,1}-T_{\infty,2}}{R_{conv,1}+R_{conv,2}+R_{cond(2D)}} =\frac{330-25}{0.076} =4.013\:\:kW[/tex]
Surface temperatures can be calculated as follows:
[tex]T_1=T_{\infty,1}-qR_{conv,1}=330-51.09=278.91\:\:^{\circ}C\\\\T_2=T_{\infty,2}+qR_{conv,2}=25+250.82=275.82\:\:^{\circ}C[/tex]