contestada

An electric current in a conductor varies with time according to the expression I(t) = 86 sin (40πt), where I is in amperes and t is in seconds. What is the total charge passing a given point in the conductor from t = 0 to t = 1/60 s?

Respuesta :

Answer:

1.14 C

Explanation:

Recall,

i = dq/dt

q = ∫idt......................... Equation 1

Where q = charge, i = current, t = time.

Given: i = 86sin(40πt)

Substitute into equation 1

q = ∫[86sin(40πt)]dt

q = 86(-cos40πt)/40π

q = 86/40π[-cos(40πt)]..................... Equation 2

Given the time limit,

0 and 1/60 s.

Substitute into equation 2

q = -86/40π[cos(40π×1/60)-cos0]

q= -86/40π[cos(2π/3)-1)

q = -86/40π[(-2/3)-1]

q= -86/40π(-5/3)

q= -0.684(-1.667)

q = 1.14 C

Answer:

1.03C

Explanation:

The current (I) flowing through a conductor is related to the charge (Q) passing through the conductor at a given range of time, t, as follows;

I(t) = [tex]\frac{dQ}{dt}[/tex]                 -----------------(i)

Now, to express the charge (Q) in terms of I and t, we need to integrate equation (i) as follows;

dQ = I(t)dt

Q = [tex]\int\limits^a_b {I(t)} \, dt[/tex]                  ---------------------------(ii)

Where, according to the question;

I(t) = 86 sin (40πt)

a = final time t = 1/60s

b = initial time t = 0

Substitute these values into equation(ii) as follows;

Q = [tex]\int\limits^\frac{1}{60} _0 {86sin(40\pi t)} \, dt[/tex]    

Q = 86 x [tex]\int\limits^\frac{1}{60} _0 {sin(40\pi t)} \, dt[/tex]            ------------------(iii)

Solve the integral as follows;

let u = 40πt           [differentiate both sides]

=> [tex]\frac{du}{dt}[/tex] = 40π

=> dt = [tex]\frac{du}{40\pi }[/tex]

=> du = 40π dt

Substitute the values of u = 40πt  and dt = [tex]\frac{du}{40\pi }[/tex] into equation(iii)

Q = 86 x [tex]\int\limits^\frac{1}{60} _0 {sin(u)} \, \frac{du}{40\pi }[/tex]        -------------------(iv)

Q = [tex]\frac{86}{40\pi }[/tex] x [tex]\int\limits^\frac{1}{60} _0 {sin(u)} \, du[/tex]

Now, integrate sin u

Q = [tex]\frac{86}{40\pi }[/tex] x [-cos (u)]               ------------------(v)

Substitute the value of u back into equation (v)

Q = [tex]\frac{86}{40\pi }[/tex] x [-cos (40πt)]

Q = - [tex]\frac{86}{40\pi }[/tex] x [cos (40πt)]               ------------------(vi)

Now, insert the values of t = 0 and t = 1/60 into equation (vi) as follows;

Q = - [tex]\frac{86}{40\pi }[/tex] x [  [cos (40π(1/60))]  - [cos (40π(0))]  ]

Q = - [tex]\frac{86}{40\pi }[/tex] x [  [cos ([tex]\frac{4\pi }{6}[/tex])]  - [cos (0)]  ]

Q = - [tex]\frac{86}{40\pi }[/tex] x [  [cos ([tex]\frac{2\pi }{3}[/tex])]  - [cos (0)]  ]

Q = - [tex]\frac{86}{40\pi }[/tex] x [  [-0.5]  - [1]  ]

Q = - [tex]\frac{86}{40\pi }[/tex] x [  -1.5 ]    

Q = [tex]\frac{86}{40\pi }[/tex] x [1.5 ]    

Q = [tex]\frac{86 * 1.5}{40\pi }[/tex]

Take π = 3.142

Q = [tex]\frac{86 * 1.5}{40 * 3.142}[/tex]

Q = [tex]\frac{129}{125.68}[/tex]

Q = 1.03C

Therefore, the total charge passing a given point in the conductor from t = 0 to t = 1/60s is 1.03C