Answer:
Z=11.0
Step-by-step explanation:
Let Caucasian individuals be the population 1 and African American be the population 2. So, we are given that
n=150
n1=75
mean1=xbar1=6.1.
standard deviation1=S.D1=σ1=1.1.
Variance1=V(x1)=σ1²=1.1²=1.21.
n2=75.
mean2=xbar2=4.3.
standard deviation2=S.D2=σ2=0.9.
Variance2=V(x2)=σ2²=0.9²=0.81.
The z-statistic is
[tex]Z=\frac{xbar1-xbar2}{\sqrt{\frac{V(x1)}{n1}+ \frac{V(x2)}{n2} } }[/tex]
[tex]Z=\frac{6.1-4.3}{\sqrt{\frac{1.21}{75}+ \frac{0.81}{75} } }[/tex]
[tex]Z=\frac{1.8}{\sqrt{0.0161+ 0.0108 } }[/tex]
[tex]Z=\frac{1.8}{\sqrt{0.0269 } }[/tex]
[tex]Z=\frac{1.8}{0.164 } }[/tex]
Z=10.97
Z=11.0
So, the z value obtained while calculating the test statistic is approximately 11.0.