The concentration of Biochemical Oxygen Demand (BOD) in a river just downstream of a wastewater treatment plant’s effluent pipe is 75 mg/L. If the BOD is destroyed through a first-order reaction with a rate constant equal to 0.05/day, what is the BOD concentration 50 km downstream? The velocity of the river is 15 km/day.

Respuesta :

Answer:

The BOD concentration 50 km downstream when the velocity of the river is 15 km/day is 63.5 mg/L

Explanation:

Let the initial concentration of the BOD = C₀

Concentration of BOD at any time or point = C

dC/dt = - KC

∫ dC/C = -k ∫ dt

Integrating the left hand side from C₀ to C and the right hand side from 0 to t

In (C/C₀) = -kt + b (b = constant of integration)

At t = 0, C = C₀

In 1 = 0 + b

b = 0

In (C/C₀) = - kt

(C/C₀) = e⁻ᵏᵗ

C = C₀ e⁻ᵏᵗ

C₀ = 75 mg/L

k = 0.05 /day

C = 75 e⁻⁰•⁰⁵ᵗ

So, we need the BOD concentration 50 km downstream when the velocity of the river is 15 km/day

We calculate how many days it takes the river to reach 50 km downstream

Velocity = (displacement/time)

15 = 50/t

t = 50/15 = 3.3333 days

So, we need the C that corresponds to t = 3.3333 days

C = 75 e⁻⁰•⁰⁵ᵗ

0.05 t = 0.05 × 3.333 = 0.167

C = 75 e⁻⁰•¹⁶⁷

C = 63.5 mg/L