When a potential difference of 154 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 29.0 nC/cm2. What is the spacing between the plates?

Respuesta :

Answer:

[tex]4.7\mu m[/tex]

Explanation:

We are given that

Potential difference=V=154 V

Surface charge density=[tex]\sigma=29nC/m^2=29\times 10^{-5} C/m^2[/tex]

Using [tex]1 nC/cm^2=10^{-5} C/m^2[/tex]

We know that

[tex]C=\frac{\epsilon_0A}{d}=\frac{Q}{V}=\frac{\sigma A}{V}[/tex]

[tex]d=\frac{\epsilon_0V}{\sigma}[/tex]

Where

[tex]\epsilon_0=8.85\times 10^{-12}C^2/Nm^2[/tex]

Using the formula

[tex]d=\frac{8.85\times 10^{-12}\times 154}{29\times 10^{-5}}[/tex]

[tex]d=4.7\times 10^{-6} m=4.7\mu m[/tex]

Using [tex]1\mu m=10^{-6} m[/tex]

Hence, the spacing between the plates=[tex]4.7\mu m[/tex]