Respuesta :

a) 9,12,15

b) 10.4

c) -3/2

Step-by-step explanation:

Step 1 :

a)

If the square of the highest length of line equals the sum of square of the other 2 length, then the 3 length can form a right triangle

Using this ,

1) 9,12,15

[tex]15^{2} = 225\\\\9^{2} +12^{2} = 225[/tex]

Hence this forms a right triangle

2)3,5,7

[tex]7^{2} =49\\\\3^{2} + 5^{2} = 34\\[/tex]

Hence this cannot form a right triangle

3)5,7,8.9

[tex](8.9)^{2} = 79.21\\\\5^{2}+7^{2} = 74\\[/tex]

This cannot form a right triangle

4)2,9,11

[tex]11^{2} = 121\\\\9^{2} + 2^{2} = 84[/tex]

Hence this cannot form a right triangle

Step 2 :

Length of the given line segment can be found using [tex]\sqrt{(x2 - x1)^{2} + (y2 - y1)^{2} } \\[/tex]

So for the given points the length is

[tex]\ \sqrt{(3-(-7))^{2} + (4-1)^{2} }[/tex]   = 10.4

Step 3 :

The slope of the given line is

m = (-7-(-4)/5-3 = -3/2