Answer:
a) P(A∩B) = 0.21
b) P(A∩B') = 0.0072
c) P(B'|A)=0.0072/0.2172=0.0331
Step-by-step explanation:
A = the gun will detect a speeder
B = driver is actually speeding
P(A|B) = 0.75
P(A|B')=0.01
P(B') = 0.72
a) by definition
P(A∩B)=P(A|B)*P(B)=0.75*(1-0.72)=0.21
b) by definition
P(A∩B')=P(A|B')*P(B')=0.01*(0.72)=0.0072
c)
by bayes theorem
P(B'|A)=P(A|B')*P(B')/P(A)
by total probability theorem
P(A)=P(A∩B)+P(A∩B')=0.21+0.0072=0.2172
so
P(B'|A)=0.0072/0.2172=0.0331