A water storage tank has the shape of a cylinder with diameter 14 ft. It is mounted so that the circular cross-sections are vertical. If the depth of the water is 13 ft, what percentage of the total capacity is being used? (Round your answer to one decimal place.)

Respuesta :

Answer:

[tex]\%A_F=77.335\%[/tex]

Explanation:

Given:

  • diameter of tank, [tex]d=14\ ft[/tex]
  • level of the tank filled in its horizontal position, [tex]h=13\ ft[/tex]
  • Now refer the schematic that show water with blue colour.

The triangle ORQ is symmetric about OS as it comes from center O on the cord QR at S.

[tex]RO=QO=7\ ft[/tex] (∵ radius of the cylinder)

[tex]RS=\sqrt{RO^2-OS^2}[/tex]

[tex]RS=3.6055\ ft[/tex]

Now the area of triangle ORQ:

[tex]A_t=\frac{1}{2}\times QR\times OS[/tex]

[tex]A_t=RS\times OS[/tex]

[tex]A_t=3.6055\times 6[/tex]

[tex]A_t=21.6333\ ft^2[/tex]

Now the angle ROS:

[tex]\cos\theta=\frac{OS}{OR}[/tex]

[tex]\theta=\cos^{-1}(\frac{6}{7} )[/tex]

[tex]\theta=31.0027^{\circ}[/tex]

Therefore the reflex angle ROQ:

[tex]\rangle ROQ=360^{\circ}-\theta^{\circ}[/tex]

[tex]\rangle ROQ=360^{\circ}-31.0027^{\circ}[/tex]

[tex]\rangle ROQ=328.9973^{\circ}[/tex]

Now the area of sector ROQPR:

We have the area of full circle, [tex]A=\pi.r^2[/tex]

where:

r = radius of the circle

hence for sector:

[tex]A_S=\pi\times 7^2\times \frac{328.9973}{360}[/tex]

[tex]A_S=140.6811\ ft^2[/tex]

Now the cross sectional area filled with water:

[tex]A_F=A_S+A_t[/tex]

[tex]A_F=140.6811-21.6333[/tex]

[tex]A_F=119.0478\ ft^2[/tex]

Total cross sectional area of tank:

[tex]A=\pi.r^2[/tex]

[tex]A=\pi\times 7^2[/tex]

[tex]A=153.9380\ ft^2[/tex]

Now the percentage of total capacity used:

[tex]\%A_F=\frac{A_F}{A}\times 100\%[/tex]

[tex]\%A_F=\frac{119.0478}{153.9380} \times 100[/tex]

[tex]\%A_F=77.335\%[/tex]

Ver imagen creamydhaka