Respuesta :
Answer:
[tex]S_{n}[/tex] = [tex]\frac{n}{2}[/tex] (3n + 7)
Step-by-step explanation:
We require to find the first term a₁ and the common difference d
The n th term is given by 3n + 2, thus
a₁ = 3(1) + 2 = 3 + 2 = 5
a₂ = 3(2) + 2 = 6 + 2 = 8
d = 8 - 5 = 3
[tex]S_{n}[/tex] = [tex]\frac{n}{2}[/tex] [ 2a₁ + (n - 1)d ], substitute values
[tex]S_{n}[/tex] = [tex]\frac{n}{2}[/tex] [ (2 × 5) + 3(n - 1) ] = [tex]\frac{n}{2}[/tex] (10 + 3n - 3) = [tex]\frac{n}{2}[/tex] (3n + 7)
Answer:
Sn = (3/2)n² + (7/2)n
Step-by-step explanation:
Sn = (n/2)[2a + (n-1)d]
a = 3(1)+2 = 5
d = second term - 5 = 3(2)+2 - 5 = 3
Sn = (n/2)[2(5) + (n-1)(3)]
= (n/2)[10 + 3n - 3]
= (n/2)(7 + 3n)
Sn = (3/2)n² + (7/2)n