Respuesta :
The difference between the points is [tex]$\sqrt{53}$[/tex]
Explanation:
The coordinate of point B is [tex]$(2,7)$[/tex]
The coordinate of point D is [tex]$(4,14)$[/tex]
The difference between the points can be determined using the formula,
[tex]$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$[/tex]
Substituting the coordinates [tex]$(2,7)$[/tex] and [tex]$(4,14)$[/tex], in the formula, we get,
[tex]$d=\sqrt{\left(4-2\right)^{2}+\left(14-7\right)^{2}}$[/tex]
Subtracting, we get,
[tex]$d=\sqrt{\left(2\right)^{2}+\left(7\right)^{2}}$[/tex]
Squaring the terms, we have,
[tex]$d=\sqrt{\left4+\left49}$[/tex]
Adding, we get,
[tex]d=$\sqrt{53}$[/tex]
Hence, the difference between the points is [tex]$\sqrt{53}$[/tex]
Answer:
i think its [tex]i think its \sqrt{x} 23 sorry if im wrong[/tex]
Step-by-step explanation: