Answer:
(b)185
(c)7.03 minutes and 2.84 minues
Step-by-step explanation:
(a) In the function [tex]f (t)= 110 e^{-0.08t} + 75[/tex], the exponential function has a negative power and [tex]e^{-t}[/tex] decreases for increasing value of t and tends to zero as t tends to infinity
(b)At the beginning of the experiment, t=0
Therefore [tex]f (t)= 110 e^{-0.08t} + 75=110 e^{-0.08X0} + 75=110 e^{-0} + 75 =185[/tex]
(c)If the temperature f(t)=140 degrees
[tex]140= 110 e^{-0.08t} + 75\\140-75=110 e^{-0.08t}\\\frac{65}{110} = e^{-0.08t}[/tex]
Taking the natural logarithm of both sides
[tex]ln \frac{65}{110} = -0.08t\\-0.5621=-0.08t\\t=\frac{-0.5621}{-0.08}=7.03 minutes[/tex]
If the temperature f(t)=100 degrees
[tex]100= 110 e^{-0.08t} + 75\\100-75=110 e^{-0.08t}\\\frac{25}{110} = e^{-0.08t}[/tex]
Taking the natural logarithm of both sides
[tex]ln \frac{25}{110} = -0.08t\\\\-0.2273=-0.08t\\t=\frac{-0.2273}{-0.08}=2.84 minutes[/tex]