Respuesta :

The value of x is [tex]\frac{-11}{3}[/tex].

Solution:

Given equation:

[tex]$\frac{-2}{x+4}=\frac{4}{x+3}[/tex]

To find the value of x:

[tex]$\frac{-2}{x+4}=\frac{4}{x+3}[/tex]

Do cross multiplication.

[tex]-2(x+3)=4(x+4)[/tex]

–2x – 6 = 4x + 16

Add 6 on both sides of the equation.

–2x = 4x + 22

Subtract 4x on both sides of the equation.

–6x = 22

Divide by –6 on both sides of the equation.

[tex]$x=\frac{-22}{6}[/tex]

[tex]$x=\frac{-11}{3}[/tex]

Checking:

Substitute x value in left side term.

[tex]$\frac{-2}{x+4}=\frac{-2}{\frac{-11}{3}+4 }[/tex]

        [tex]$=\frac{-2}{\frac{-11+12}{3}}[/tex]

        [tex]$=\frac{-2}{\frac{1}{3}}[/tex]

        = – 6

Substitute x value in right side term.

[tex]$\frac{4}{x+3}=\frac{4}{\frac{-11}{3}+3 }[/tex]

         [tex]$=\frac{4}{\frac{-11+9}{3}}[/tex]

         [tex]$=\frac{4}{\frac{-2}{3}}[/tex]

         = – 6

Hence the value of x is [tex]\frac{-11}{3}[/tex].