dmfmmxx
contestada

Which statement listed below illustrates the reflexive property of congruence
for triangles?
O
A. If KLM = PQR and PQR= STU, then KLM = STU.

B. If KLM= PQR, then PQR=
STU.

C. If KLM= PQR, then PQR = KLM

O D. KLM = KLM

Which statement listed below illustrates the reflexive property of congruence for triangles O A If KLM PQR and PQR STU then KLM STU B If KLM PQR then PQR STU C class=

Respuesta :

Option D:

[tex]\triangle K L M \cong \triangle K L M[/tex]

Solution:

Reflexive property of congruence:

Reflexive property of congruence means the geometric figure is congruent to itself.

Option A: If [tex]\triangle K L M \cong \triangle P Q R \text { and } \triangle P Q R \cong \triangle S T U \text { , then } \triangle K LM\cong \triangle S T U[/tex]

From the definition of reflexive property, it is not true.

This is transitive property of congruence triangles.

Therefore it is false.

Option B: [tex]\text { If } \triangle KL M \cong \triangle P Q R \text { , then } \triangle P Q R \cong \triangle S T U \text[/tex]

From the definition of reflexive property, it is not true.

Therefore it is false.

Option C: [tex]\text { If } \triangle K L M \cong \triangle P Q R \text { , then } \triangle P Q R \cong \triangle K L M[/tex]

From the definition of reflexive property, it is not true.

Therefore it is false.

Option D: [tex]\triangle K L M \cong \triangle K L M[/tex]

Here, ΔKLM is congruent to itself.

This statement illustrates the reflexive property of congruence for triangles.

Therefore, it is true.

Hence option D is the correct answer.