Respuesta :
Answer: V(t)=[tex]11000e^{0.0138t}[/tex]
Step-by-step explanation:
Now, the Value, V(t) at any time will depend on the initial value of the house, given as [tex]V_{0}[/tex].
The function that models the exponential growth of the house value in dollars at any time is given (from idea of Depreciation and Calculus) as: V(t)=[tex]V_{0}e^{rt}[/tex] where r=rate and t=time in years,
In 1985 [tex]V_{0}[/tex]=$110,000, t=0
In 2005, t=20 i.e 20 years after, and V(t)=$145,000
V(t)=[tex]V_{0}e^{rt}[/tex]
145000=[tex]110000e^{r X 20}[/tex]
[tex]e^{r X 20}[/tex]= [tex]\frac{145000}{110000}[/tex]
Taking the natural logarithm of both sides
20r= ln [tex]\frac{145000}{110000}[/tex]
r= [tex]\frac{0.2762}{20}[/tex]=0.01381
The function that models this particular growth is:
V(t)=[tex]11000e^{0.0138t}[/tex]