The n candidates for a job have been ranked 1, 2, 3,…, n. Let X 5 the rank of a randomly selected candidate, so that X has pmf p(x) 5 5 1yn x 5 1, 2, 3,…, n 0 otherwise (this is called the discrete uniform distribution). Compute E(X) and V(X) using the shortcut formula. [Hint: The sum of the first n positive integers is n(n 1 1)y2, whereas the sum of their squares is n(n 1 1)(2n 1 1)y6.]