Respuesta :

Option B:

[tex]${f(x)}=9280-20x[/tex]

Solution:

[tex]$\frac{1}{16} x+\frac{1}{320} y-29=0[/tex]

[tex]$\frac{1}{16} x+\frac{1}{320} y-\frac{29}{1} =0[/tex]

Take LCM of the denominators and Make the denominators same.

LCM of 16, 320, 1 = 320

[tex]$\frac{1\times20}{16\times20} x+\frac{1}{320} y-\frac{29\times 320}{1\times 320} =0[/tex]

[tex]$\frac{20}{320} x+\frac{1}{320} y-\frac{9280}{320} =0[/tex]

All the denominators are same, so you can write in one fraction.

[tex]$\frac{20x+y-9280}{320}=0[/tex]

Do cross multiplication.

[tex]${20x+y-9280}=0\times 320[/tex]

[tex]${20x+y-9280}=0[/tex]

Add 9280 on both sides of the equation.

[tex]${20x+y}=9280[/tex]

Subtract 20x on both sides of the equation.

[tex]${y}=9280-20x[/tex]

Let y = f(x).

[tex]${f(x)}=9280-20x[/tex]

Hence Option B is the correct answer.

Answer:

b

Step-by-step explanation: