Answer:
0.3 to 2.3 min
Step-by-step explanation:
n1=n2=10
x1=48
x2=49
s1=4
s2=1
Determine the deegres of freedom.
[tex]\delta=\frac{(\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2})^2}{\frac{(\frac{s_1^2}{n1})^2}{n_1-1}+\frac{(\frac{s_1^2}{n1})^2}{n_2-1}}=10.14[/tex]
t=2.037 (student's appendix)
[tex]E=t\sgrt(\frac{s_1^2}{n_1}+\frac{s^2_2}{n_2})=1.3[/tex]
[tex] (x_1-x_2)-E=(48-49)-1.3=-2.3[/tex]
[tex] (x_1-x_2)+E=(48-49)+1.3=0.3[/tex]
We are 95% confident that average commuting time for rute A is between 0.3 and 2.3 min shorter than for rute B.