Answer:
Present value = $1,117
Future value = $1,585
Explanation:
Given:
1st investment (C1) = $100
Number of year = 3
2nd Investment(C2) = $200 ( 4th year)
3rd Investment(C3) = $300 (5th year)
4th Investment(C4) = $500 (6th year)
rate of interest = 6% = 0.06
Present value :
[tex]Present \ value = \frac{C1}{(1+R)^1} +\frac{C1}{(1+R)^2}+ \frac{C1}{(1+R)^3} +\frac{C2}{(1+R)^4} +\frac{C3}{(1+R)^5}+ \frac{C4}{(1+R)^6} \\Present \ value = \frac{100}{(1+0.06)^1} +\frac{100}{(1+0.06)^2}+ \frac{100}{(1+0.06)^3} +\frac{250}{(1+0.06)^4} +\frac{400}{(1+0.06)^5}+ \frac{500}{(1+0.06)^6}[/tex]
[tex]Present \ value = \frac{100}{(1.06)^1} +\frac{100}{(1.06)^2}+ \frac{100}{(1.06)^3} +\frac{250}{(1.06)^4} +\frac{400}{(1.06)^5}+ \frac{500}{(1.06)^6} \\Present \ value = \frac{100}{(1.06)} +\frac{100}{(1.1236)}+ \frac{100}{(1.191)} +\frac{250}{(1.2624)} +\frac{400}{(1.3382)}+ \frac{500}{(1.4185)} \\Present \ value =94.39+88.99+83.96+198.03+298.90+352.48\\ =1116.75[/tex]
Present value = $1,116.75 = $1,117
Future Value:
[tex]Future Value =PV (1+r)^n\\= 1,117(1+0.06)^6\\= 1,117(1.06)^6\\=1,117(1.4185)\\=1,584.50[/tex]
Future value = $1,585