A soil is at a void ratio e = 0.90 with a specific gravity of the solid particles Gs = 2.70.

(a) Calculate the upper and lower limits for the water content w.
(b) Compute the mass of water in 100 cm3 sample of the soil at this e when saturation S = 50%. Note rhow = 1 g/cm3 .

Respuesta :

Answer:

The correct answers are:

a. % w = 33.3%

b. mass of water = 45g

Explanation:

First, let us define the parameters in the question:

void ratio e  = [tex]\frac{V_v}{V_s}[/tex] =  [tex]\frac{\left\begin{array}{ccc}volume&of&void\end{array}\right}{\left\begin{array}{ccc}volume&of&solid\end{array}\right}------ (1)[/tex]

Specific gravity [tex]G_{s}[/tex] = [tex]\frac{P_s}{P_w} =[/tex]  [tex]\frac{\left\begin{array}{ccc}density&of&soil\end{array}\right}{\left\begin{array}{ccc}density&of&water\end{array}\right}------ (2)[/tex]

% Saturation S = [tex]\frac{V_w}{Vv}[/tex] × [tex]\frac{100}{1}[/tex] =  [tex]\frac{\left\begin{array}{ccc}volume&of&water\end{array}\right}{\left\begin{array}{ccc}volume&of&void\end{array}\right}[/tex] × [tex]\frac{100}{1}--------(3)[/tex]

water content w =  [tex]\frac{M_w}{M_s}[/tex] = [tex]\frac{\left\begin{array}{ccc}mass&of&water\end{array}\right}{\left\begin{array}{ccc}mass&of&solid\end{array}\right} ------(4)[/tex]

a) To calculate the lower and upper limits of water content:

when S = 100%, it means that the soil is fully saturated and this will give the upper limit of water content.

when S < 100%, the soil is partially saturated, and this will give the lower limit of water content.

Note; S = 0% means that the soil is perfectly dry. Hence, when s = 1 will give the lowest limit of water content.

To get the relationship between water content and saturation, we will manipulate the equations above;

w =  [tex]\frac{M_w}{Ms}[/tex]

Recall; mass = Density × volume

w = [tex]\frac{V_wP_w}{V_sP_s} ------(5)[/tex]

From eqn. (2)  [tex]G_{s}[/tex] = [tex]\frac{P_s}{P_w}[/tex]

∴ [tex]\frac{1}{G_s} = \frac{P_w}{P_s} ------(6)[/tex]

putting eqn. (6) into (5)

w = [tex]\frac{V_w}{V_sG_s} -----(7)[/tex]

Again, from eqn (1)

[tex]V_s = \frac{V_v}{e}[/tex]

substituting into eqn. (7)

[tex]w = \frac{V_w}{\frac{V_v}{e}{G_s} } = \frac{V_w e}{V_vG_s} \\ but \frac{V_w}{V_v} = S[/tex]

∴ [tex]w = \frac{Se}{G_s} -----(8)[/tex]

With eqn. (7), we can calculate

upper limit of water content

when S = 100% = 1

Given, [tex]G_{s} = 2.7, e= 0.9[/tex]

∴[tex]w= \frac{0.9*1}{2.7} = 0.333[/tex]

∴ %w = 33.3%

Lower limit of water content

when S = 1% = 0.01

[tex]w= \frac{0.01*0.9 }{2.7} = 0.0033[/tex]

∴ % w = 0.33%

b) Calculating mass of water in 100 cm³ sample of soil ([tex]P_w=\frac{1_g}{cm^{3} }[/tex] )

Given, [tex]V_{s} = 100 cm^{3 }[/tex], S = 50% = 0.5

%S = [tex]\frac{V_w}{V_v}[/tex] × [tex]\frac{100}{1}[/tex] = [tex]\frac{V_w}{eV_s}[/tex] × [tex]\frac{100}{1}[/tex]

0.50 = [tex]\frac{V_w}{0.9* 100} = 45cm^{3}[/tex]

mass of water = [tex]P_wV_w= 1 * 45 = 45_{g}[/tex]