A satellite m = 500 kg orbits the earth at a distance d = 245 km, above the surface of the planet. The radius of the earth is re = 6.38 × 106 m and the gravitational constant G = 6.67 × 10-11 N m2/kg2 and the Earth's mass is me = 5.98 × 1024 kg. What is the speed of the satellite in m/s?

Respuesta :

Answer:

[tex]7759.3m/s[/tex]

Explanation:

We are given that

Mass of satellite=[tex]m=500 kg[/tex]

Distance, d=245 km=[tex]245000m[/tex]

Using 1km=1000m

Radius of the earth=[tex]r_e=6.38\times 10^6[/tex]m

[tex]G=6.67\times 10^{-11}Nm^2/kg^2[/tex]

Mass of earth,[tex]m_e=5.98\times 10^{24} Kg[/tex]

We have to find the speed of the satellite.

Radius of orbit=[tex]R=r_e+d=245000+6.38\times 10^6=6.625\times 10^6m[/tex]

Centripetal force of satellite=Gravitational force

[tex]\frac{mv^2}{R}=\frac{Gmm_e}{R^2}[/tex]

[tex]v^2=\frac{Gm_e}{R}[/tex]

[tex]v=\sqrt{\frac{Gm_e}{R}}[/tex]

[tex]v=\sqrt{\frac{6.67\times 10^{-11}\times 5.98\times 10^{24}}{6.625\times 10^6}}[/tex]

[tex]v=7759.3m/s[/tex]