Answer:
[tex]m_q=59.386\ g[/tex]
Explanation:
Given:
specific heat capacity of quartz, [tex]c_q=0.73\ J.g^{-1}.^{\circ}C^{-1}[/tex]
mass of water, [tex]m_w=300\ g[/tex]
initial temperature of quartz, [tex]T_{iq}=95.8^{\circ}C[/tex]
initial temperature of water, [tex]T_{iw}=15^{\circ}C[/tex]
final settled temperature of water after quartz is put into it, [tex]T_f=17.7^{\circ}C[/tex]
Now by the law of conservation of energy using heat equations:
[tex]Q_q+Q_w=0[/tex]
[tex]m_q.c_q.(T_f-T_{iq})+m_w.c_w.(T_f-T_{iw})=0[/tex]
where:
[tex]c_w=[/tex] specific heat of water = [tex]4.18\ J.g^{-1}.^{\circ}C^{-1}[/tex],
[tex]m_q\times0.73\times (17.7-95.8)+300\times 4.18\times (17.7-15)=0[/tex]
[tex]m_q=59.386\ g[/tex] is the mass of quartz.