A. Find y in terms of x if

dy/dx =x^4y^−1
and y(0)=6

y(x)= .

B. For what x-interval is the solution defined?
(Your answers should be numbers or plus or minus infinity. For plus infinity enter "PINF"; for minus infinity enter "MINF".)

The solution is defined on the interval:
x .

Respuesta :

Answer:

A.[tex]y(x) =\sqrt{ 2(\frac{x^5}{5} -\frac{6^5}{5})}[/tex]

B.Therefore the solution is defined on the interval:

6≤ x ≤ +∞

Step-by-step explanation:

Given differential equation is

[tex]\frac{dy}{dx} = x^4y^{-1}[/tex]

[tex]\Rightarrow \frac{dy}{dx} =\frac{ x^4}{y}[/tex]

[tex]\Rightarrow y dy = x^4dx[/tex]

Integrating both sides:

[tex]\Rightarrow\int y dy = \int x^4dx[/tex]

[tex]\Rightarrow \frac{y^2}{2} =\frac{x^5}{5} +C[/tex]........(1)

Given y(0)= 6

it means y=0 when x=6

Putting x=6 and y=0 in the equation (1)

[tex]\therefore \frac{0^2}{2} =\frac{6^5}{5} +C[/tex]

[tex]\Rightarrow C=-\frac{6^5}{5}[/tex]

Equation (1) become:

[tex]\Rightarrow \frac{y^2}{2} =(\frac{x^5}{5} -\frac{6^5}{5})[/tex]

[tex]\Rightarrow y} =\sqrt{ 2(\frac{x^5}{5} -\frac{6^5}{5})}[/tex]

Therefore [tex]y(x) =\sqrt{ 2(\frac{x^5}{5} -\frac{6^5}{5})}[/tex]

(B)

The quantity under root must greater than or equal to zero.

Therefore,

[tex]2(\frac{x^5}{5} -\frac{6^5}{5})} \geq0[/tex]

[tex]\Rightarrow \frac{x^5}{5} -\frac{6^5}{5}} \geq0[/tex]

[tex]\Rightarrow \frac{x^5}{5} \geq\frac{6^5}{5}}[/tex]

[tex]\Rightarrow x^5\geq {6^5[/tex]

[tex]\Rightarrow \sqrt[5]{x^5} \geq \sqrt[5]{6^5}[/tex]

[tex]\Rightarrow x\geq {6[/tex]

When x≥0 then the value of [tex]2(\frac{x^5}{5} -\frac{6^5}{5})}[/tex] is real other wise the value of [tex]2(\frac{x^5}{5} -\frac{6^5}{5})}[/tex] is imaginary.

Therefore the solution is defined on the interval:

6≤ x ≤ +∞