Respuesta :

Answer:

Step-by-step explanation:

tan Θ + tan 2Θ + √3 tan Θ tan 2Θ = √3

tan Θ + tan 2Θ = √3 - √3 tan Θ tan 2Θ

tan Θ + tan 2Θ = √3 ( 1 - tan Θ tan 2Θ)

(tan Θ + tan 2Θ) / (1 - tanΘ tan 2Θ) = √3

tan(Θ  + 2Θ) = √3

tan 3Θ = tan ([tex]\frac{\pi }{3}[/tex])           we know tan Θ = tan α; Θ = nΠ + α, n belongs to z

3Θ = nΠ + Π/3

Θ = nπ/3 + Π/9 for all n in Z