In triangle GHI, m∠H is 20 more than m∠G, and m∠G is 8 more than m∠I. What is the measure of each angle? Please show work

Respuesta :

Let [tex]\hat{G}, \hat{H}, \hat{I}[/tex] be the measures of the angles. We know that [tex]\hat{H} = \hat{G}+20[/tex] and [tex]\hat{G} = \hat{I}+8[/tex].

Moreover, we know that the sum of the interior angles of a triangle is 180:

[tex]\hat{H} + \hat{G}+\hat{I}=180[/tex]

So, we have the following system:

[tex]\begin{cases}\hat{H}=\hat{G}+20\\\hat{G}=\hat{I}+8\\\hat{G}+\hat{H}+\hat{I}=180\end{cases}[/tex]

Using the first two equations, we can express [tex]\hat{H}[/tex] and [tex]\hat{I}[/tex] in terms of [tex]\hat{G}[/tex]:

[tex]\hat{H}=\hat{G}+20,\quad \hat{I}=\hat{G}-8[/tex]

So, the last equation becomes

[tex]\hat{G}+(\hat{G}+20)+(\hat{G}-8)=180 \iff 3\hat{G}+12=180 \iff 3\hat{G}=168 \iff \hat{G}=56[/tex]

And we deduce

[tex]\hat{H}=\hat{G}+20=76,\quad \hat{I}=\hat{G}-8=48[/tex]