A saturated 1.5 ft3 clay sample has a natural water content of 25%, shrinkage limit (SL) of 12% and a specific gravity (GS) of 2.70. Determine the volume of the sample when the water content is 10%.

Respuesta :

[tex]79 f t^{3}[/tex] is the volume of the sample when the water content is 10%.

Explanation:

Given Data:

[tex]V_{1}=100\ \mathrm{ft}^{3}[/tex]

First has a natural water content of 25% = [tex]\frac{25}{100}[/tex] = 0.25

Shrinkage limit, [tex]w_{1}=12 \%=\frac{12}{100}=0.12[/tex]

[tex]G_{s}=2.70[/tex]

We need to determine the volume of the sample when the water content is 10% (0.10). As we know,

[tex]V \propto[1+e][/tex]

[tex]\frac{V_{2}}{V_{1}}=\frac{1+e_{2}}{1+e_{1}}[/tex]  ------> eq 1

[tex]e_{1}=\frac{w_{1} \times G_{s}}{S_{r}}[/tex]

The above equation is at [tex]S_{r}=1[/tex],

[tex]e_{1}=w_{1} \times G_{s}[/tex]

Applying the given values, we get

[tex]e_{1}=0.25 \times 2.70=0.675[/tex]

Shrinkage limit is lowest water content

[tex]e_{2}=w_{2} \times G_{s}[/tex]

Applying the given values, we get

[tex]e_{2}=0.12 \times 2.70=0.324[/tex]

Applying the found values in eq 1, we get

[tex]\frac{V_{2}}{100}=\frac{1+0.324}{1+0.675}=\frac{1.324}{1.675}=0.7904[/tex]

[tex]V_{2}=0.7904 \times 100=79\ \mathrm{ft}^{3}[/tex]

Ver imagen jacknjill