Respuesta :
Answer:
8.62m/s²
Explanation:
the particle is experiencing both translational and circular motion
v=4t²
[tex]a_{t}[/tex]=[tex]\frac{dv}{dt}[/tex]=8t
at t=1s, [tex]\frac{dv}{dt}[/tex]=8(1)=8m/s²
[tex]a_{c}[/tex] = [tex]\frac{v^{2} }{r}[/tex]
at t=1, v= 4(1)² = 4m/s
[tex]a_{c}[/tex]=4²/5
[tex]a_{c}[/tex]=3.2m/s²
∴ magnitude of total acceleration, a
a=[tex]\sqrt{a_{t} ^{2} + a_{c} {2} }[/tex]
a=[tex]\sqrt{8^{2} +3.2^{2} }[/tex]
a=[tex]\sqrt{64+10.24}[/tex]
a=[tex]\sqrt{74.24}[/tex]
a=8.62m/s²
Answer:
8.62m/s²
Explanation:
The total acceleration (a) of a particle undergoing a circular motion is given by the vector sum of the tangential acceleration ([tex]a_{T}[/tex]) and the centripetal or radial acceleration ([tex]a_{C}[/tex]) of the particle. The magnitude of this total acceleration is given as follows;
a = [tex]\sqrt{(a_{T} )^2 + (a_{C} )^2}[/tex] ------------------(i)
(i) But;
[tex]a_{T}[/tex] = time rate of change of velocity (v) = Δv / Δt = [tex]\frac{dv}{dt}[/tex]
From the question,
v = 4t² -------------------(ii)
Therefore, differentiating equation (ii) with respect to t gives the tangential acceleration as follows;
[tex]a_{T}[/tex] = dv / dt = [tex]\frac{dv}{dt}[/tex] = [tex]\frac{d(4t^{2} )}{dt}[/tex]
[tex]a_{T}[/tex] = 8t
Now, at time t = 1s, the tangential acceleration is given by substituting t = 1 into equation (iii) as follows;
[tex]a_{T}[/tex] = 8(1)
[tex]a_{T}[/tex] = 8m/s²
(ii) Also;
[tex]a_{C}[/tex] = [tex]\frac{v^2}{r}[/tex] ------------------------ (iv)
Where;
r = radius of the circular path of motion = 5m
v = velocity of motion = 4t²
Substitute these values into equation (iv) as follows;
[tex]a_{C}[/tex] = [tex]\frac{(4t^2)^2}{5}[/tex] -------------------------------(v)
Now, at time t = 1s, the centripetal acceleration is given by substituting t = 1 into equation (v) as follows;
[tex]a_{C}[/tex] = [tex]\frac{(4(1)^2)^2}{5}[/tex]
[tex]a_{C}[/tex] = [tex]\frac{(4)^2}{5}[/tex]
[tex]a_{C}[/tex] = [tex]\frac{16}{5}[/tex]
[tex]a_{C}[/tex] = 3.2m/s²
(iii) Now substitute the values of [tex]a_{T}[/tex] and [tex]a_{C}[/tex] into equation (i) as follows;
a = [tex]\sqrt{(8)^2 + (3.2)^2}[/tex]
a = [tex]\sqrt{(64) + (10.24)}[/tex]
a = [tex]\sqrt{74.24}[/tex]
a = 8.62 m/s²
Therefore, the magnitude of the total acceleration at t = 1s is 8.62m/s²