Answer: The activation energy of the reaction is 113.8 kJ/mol
Explanation:
To calculate activation energy of the reaction, we use Arrhenius equation, which is:
[tex]\ln(\frac{K_{258^oC}}{K_{195^oC}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]K_{258^oC}[/tex] = equilibrium constant at 258°C = [tex]2.20\times 10^{-3}L/mol.s[/tex]
[tex]K_{195^oC}[/tex] = equilibrium constant at 195°C = [tex]6.85\times 10^{-5}L/mol.s[/tex]
[tex]E_a[/tex] = Activation energy of the reaction = ?
R = Gas constant = 8.314 J/mol K
[tex]T_1[/tex] = initial temperature = [tex]195^oC=[195+273]K=468K[/tex]
[tex]T_2[/tex] = final temperature = [tex]258^oC=[258+273]K=531K[/tex]
Putting values in above equation, we get:
[tex]\ln(\frac{2.20\times 10^{-3}}{6.85\times 10^{-5}})=\frac{E_a}{8.314J/mol.K}[\frac{1}{468}-\frac{1}{531}]\\\\E_a=113780J/mol=113.8kJ/mol[/tex]
Hence, the activation energy of the reaction is 113.8 kJ/mol