Respuesta :

Option C: -3 is the average rate of change between [tex]x=-1[/tex] and [tex]x=1[/tex]

Explanation:

The formula to determine the average rate of change is given by

Average rate of change = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

We need to find the average rate of change between [tex]x=-1[/tex] and [tex]x=1[/tex]

Thus, from the table, we have,

[tex]x_1=-1[/tex] , [tex]y_1=5[/tex]

[tex]x_2=1[/tex] , [tex]y_2=-1[/tex]

Thus, substituting these values in the formula, we get,

Average rate of change = [tex]\frac{-1-5}{1+1}[/tex]

                                        [tex]=\frac{-6}{2}[/tex]

                                        [tex]=-3[/tex]

Thus, the average rate of change between [tex]x=-1[/tex] and [tex]x=1[/tex] is -3.

Hence, Option C is the correct answer.