Respuesta :
Option B: [tex]$y=4$[/tex] is the value of y
Explanation:
It is given that "Two times x is 8 more than y". Writing it as expression, we have,
[tex]2x=8+y[/tex]
It is also given that "The sum of x and two times y is 14". Writing it as expression, we have,
[tex]x+2y=14[/tex]
To find the value of y, let us solve the two equations using substitution method.
From the equation [tex]2x=8+y[/tex] , let us find the value of x.
[tex]x=\frac{8+y}{2}[/tex]
[tex]x=\frac{8}{2} +\frac{y}{2}[/tex]
[tex]x=4+\frac{y}{2}[/tex]
Now, substituting [tex]x=4+\frac{y}{2}[/tex] in the equation [tex]x+2y=14[/tex] , we get,
[tex]4+\frac{y}{2}+2y=14[/tex]
[tex]4+\frac{5y}{2} =14[/tex]
[tex]$\frac{5 y}{2}=10$[/tex]
[tex]5y=20[/tex]
[tex]$y=4$[/tex]
Thus, the value of y is [tex]$y=4$[/tex]