Answer:
[tex]560[/tex] mg of powder 1 and [tex]160[/tex] mg of powder 2
Explanation:
Let "X" denotes weight of powder 1 added to the new mixture and "Y" denotes weight of powder 2 added to the new mixture
Total weight of vitamin B1 in the mixture is equal to [tex]80[/tex] mg
Total weight of vitamin B2 in the mixture is equal to [tex]200[/tex] mg
Equation 1
[tex]0.1 X + 0.15 Y= 80[/tex]
Equation 2
[tex]0.3 X + 0.2 Y= 200[/tex]
Let us simplify the above two equations, we will get
[tex]10 X + 15 Y = 8000\\3X + 2Y = 2000[/tex]
[tex]2 (10 X + 15 Y = 8000), 20X + 30 Y = 1600015(3X + 2Y = 2000), 45X +30Y = 30000\\25 X = 14000\\X = 560[/tex]
Substituting value of X in equation 2 we get
[tex]0.3 * 560 + 0.2 Y = 200\\0.2 Y = 200 - 168\\Y = 160[/tex]