Answer:
[tex]S = 20903.4[/tex] ft
Explanation:
First we will determine the acceleration of the bus while it is moving upward
The equilibrium equation would be
[tex]F - W sin\theta = ma'\\ma - W sin\theta = ma'\\m = \frac{W}{g} \\\frac{W}{g}*a - W sin\theta = \frac{W}{g} * a'\\\frac{a}{g} - sin\theta = \frac{a'}{g}\\\frac{x}{y} \frac{5}{32.2} - sin 10 = \frac{a'}{32.2} \\\a' = -0.59[/tex]
Let the displacement be [tex]S_0[/tex]
As per newton's third law of motion
[tex]v^2 -u^2 = 2as\\u = 80 \frac{mi}{h} = 117.33\frac{ft}{s}\\v = 50 \frac{mi}{h} = 73.33\frac{ft}{s}\\73.33 ^ 2 - 117.33^2 = 2 * (-0.59) * (S-S_0)\\\\S_0 = 0\\S = 20903.4[/tex]