In trapezoid PQRS, [tex]\overline{PQ} \parallel \overline{RS}[/tex]. Let X be the intersection of diagonals [tex]\overline{PR}$ and $\overline{QS}[/tex]. The area of triangle PQX is 20, and the area of triangle RSX is 45. Find the area of trapezoid PQRS.

Respuesta :

Answer:

125

Step-by-step explanation:

In the diagram below; we have four triangles

Triangle

PRX; QSX; PQX; RSX

Let;

Δ PRX = [tex]T_1[/tex]

Δ QSX =[tex]T_2[/tex]

Δ  PQX = [tex]T_3[/tex]  = 20

Δ PQX = [tex]T_4[/tex]  = 45

∴ [tex]T_1*T_2 =T_3*T_4[/tex]

[tex]T_1[/tex] is also parallel to [tex]T_2[/tex]  : as such,[tex]T_1[/tex] = [tex]T_2[/tex]

∴[tex]T^2_{(1,2)}[/tex] = [tex]T_3*T_4[/tex]

[tex]T^2_{(1,2)}[/tex] = 20 × 45

[tex]T^2_{(1,2)}[/tex] = 900

[tex]T_{(1,2)}[/tex] = [tex]\sqrt{900}[/tex]

[tex]T_{(1,2)}[/tex] = 30

The area of the trapezoid is equal to T

T = [tex]T_1+T_2+T_3+T_4[/tex]

T = 30 + 30 + 20 + 45

T = 125

Ver imagen ajeigbeibraheem

Answer:D

Step-by-step explanation: