The amplitude of a transverse wave on a string is 3.0 cm. The ratio of the maximum particle speed to the speed of the wave is 3.9. What is the wavelength (in cm) of the wave?

Respuesta :

Answer:

Therefore the wavelength of the particle is 4.83 m.

Explanation:

Transverse wave: A transverse wave is a moving wave whose direction of wave and oscillation are perpendicular to each other.

Amplitude:The amplitude of a wave is the maximum the distance from its rest position covered by a particle.

Here amplitude (A) = 3.0 cm

The ratio of maximum speed to the speed of the particle is 3.9

The maximum speed of the particle [tex]C_{max}[/tex]= A×ω

The speed of the particle C= f×λ

Then,

[tex]\frac{C_max}{C} =\frac{A\times \omega}{f\times \lambda}[/tex]

[tex]\Rightarrow \frac{C_max}{C} =\frac{A\times 2\pi \times f}{f\times \lambda}[/tex]             [∵ω=2πf]

[tex]\Rightarrow \frac{C_max}{C} =\frac{A\times 2\pi }{ \lambda}[/tex]

[tex]\Rightarrow 3.9=\frac{3\times 2\pi }{ \lambda}[/tex]

[tex]\Rightarrow \lambda=\frac{3\times 2\pi }{ 3.9}[/tex]

[tex]\Rightarrow \lambda = 4.83[/tex] m

Therefore the wavelength of the particle is 4.83 m