Respuesta :

Answer:

[tex]\dfrac{9}{2}[/tex]

Step-by-step explanation:

You can do this using the quadratic equation:

[tex]x =\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}[/tex]

Let's first setup our expression:

4x² + 12x = 135

the quadratic formula is:

ax² + bx + c = 0

4x² + 12x - 135 = 0

Then:

a = 4

b = 12

c = -135

Now we plug in our coefficients and solve:

[tex]x =\dfrac{-12\pm\sqrt{12^{2}-4(4)(-135)}}{2(4)}[/tex]

We solve for both to determine the positive one:

[tex]x =\dfrac{-12+ \sqrt{12^{2}-4(4)(-135)}}{2(4)}[/tex]              [tex]x =\dfrac{-12- \sqrt{12^{2}-4(4)(-135)}}{2(4)}[/tex]

[tex]x =\dfrac{-12+ \sqrt{144+2160}}{8}[/tex]                        [tex]x =\dfrac{-12- \sqrt{144+2160}}{8}[/tex]

[tex]x =\dfrac{-12+ \sqrt{2304}}{8}[/tex]                                 [tex]x =\dfrac{-12- \sqrt{2304}}{8}[/tex]

[tex]x =\dfrac{-12+ 48}{8}[/tex]                                        [tex]x =\dfrac{-12- 48}{8}[/tex]

[tex]x =\dfrac{36}{8} = \dfrac{9}{2}[/tex]                                           [tex]x =\dfrac{-60}{8} = \dfrac{-15}{2}[/tex]

So if you are looking for a positive solution, just take the positive one as x.