Respuesta :
Answer:
[tex]\frac{16}{10\pi}[/tex] feet per minute.
Explanation:
We have been given that g Gravel is being dumped from a conveyor belt at a rate of 40 cubic feet per minute. It forms a pile in the shape of a right circular cone whose base diameter and height are always equal.
This means that 2 times radius is equal to height that is [tex]2r=h[/tex].
Let us solve for radius as:
[tex]r=\frac{h}{2}[/tex]
We will use cone formula to solve our given problem.
[tex]V=\frac{\pi r^2 h}{3}[/tex]
Now, we will rewrite volume function in terms of height as:
[tex]V=\frac{(\frac{h}{2})^2 h\pi }{3}[/tex]
[tex]V=\frac{\frac{h^2}{4} h\pi }{3}[/tex]
[tex]V=\frac{h^3\pi }{3\cdot 4}[/tex]
[tex]V=\frac{\pi }{12}\cdot h^3[/tex]
Now, we will find derivative of volume with respect to time.
[tex]V'=\frac{\pi }{12}\cdot 3h^2\cdot h'[/tex]
[tex]V'=\frac{h^2\pi }{4}\cdot h'[/tex]
Now, we will substitute [tex]h=25[/tex] and [tex]v'=40[/tex] and solve for [tex]h'[/tex] as:
[tex]40=\frac{(10)^2\pi }{4}\cdot h'[/tex]
[tex]40=\frac{100\pi }{4}\cdot h'[/tex]
[tex]40\cdot \frac{4}{100\pi}=\frac{100\pi }{4}\cdot \frac{4}{100\pi}\cdot h'[/tex]
[tex]\frac{160}{100\pi}= h'[/tex]
[tex]h'=\frac{16}{10\pi}[/tex]
Therefore, the height of the pile is increasing at a rate of [tex]\frac{16}{10\pi}[/tex] feet per minute.