the corresponding point on the graph of [tex]y = f(x)[/tex] where [tex]g(x) = \frac{1}{3(f(x))}[/tex] is [tex](-12,\frac{1}{36})[/tex] .
Step-by-step explanation:
We have , The point (-12,12) is on the graph of y=f(x). We need to Find the corresponding point on the graph of y=g(x) where g(x)= 1/3f(x) . Let's find out:
On function [tex]y = f(x)[/tex] , a point [tex]p(-12,12)[/tex] lies . Another function [tex]g(x) = \frac{1}{3(f(x))}[/tex] .
According to question , as On function [tex]y = f(x)[/tex] , a point [tex]p(-12,12)[/tex] lies :
⇒ [tex]12= f(-12)[/tex]
Now, Putting x = -12 in function [tex]g(x) = \frac{1}{3(f(x))}[/tex] we get:
⇒ [tex]g(x) = \frac{1}{3(f(x))}[/tex]
⇒ [tex]y=g(-12) = \frac{1}{3(f(-12))}[/tex] { [tex]12= f(-12)[/tex] }
⇒ [tex]y= \frac{1}{3(12)}[/tex]
⇒ [tex]y= \frac{1}{36}[/tex]
Therefore, the corresponding point on the graph of [tex]y = f(x)[/tex] where [tex]g(x) = \frac{1}{3(f(x))}[/tex] is [tex](-12,\frac{1}{36})[/tex] .