Respuesta :

the corresponding point on the graph of  [tex]y = f(x)[/tex] where [tex]g(x) = \frac{1}{3(f(x))}[/tex] is [tex](-12,\frac{1}{36})[/tex] .

Step-by-step explanation:

We have , The point (-12,12) is on the graph of y=f(x).  We need to Find the corresponding point on the graph of y=g(x) where g(x)= 1/3f(x) . Let's find out:

On function [tex]y = f(x)[/tex] , a point [tex]p(-12,12)[/tex] lies . Another function [tex]g(x) = \frac{1}{3(f(x))}[/tex] .

According to question ,  as On function [tex]y = f(x)[/tex] , a point [tex]p(-12,12)[/tex] lies :

[tex]12= f(-12)[/tex]

Now, Putting x = -12 in function [tex]g(x) = \frac{1}{3(f(x))}[/tex] we get:

[tex]g(x) = \frac{1}{3(f(x))}[/tex]

[tex]y=g(-12) = \frac{1}{3(f(-12))}[/tex]     { [tex]12= f(-12)[/tex] }

[tex]y= \frac{1}{3(12)}[/tex]    

[tex]y= \frac{1}{36}[/tex]

Therefore, the corresponding point on the graph of  [tex]y = f(x)[/tex] where [tex]g(x) = \frac{1}{3(f(x))}[/tex] is [tex](-12,\frac{1}{36})[/tex] .