Respuesta :

Answer:

Part 1) [tex]f(x)=\frac{x+4}{x}[/tex] -----> [tex]x\neq 0[/tex]

Part 2) [tex]f(x)=\frac{x}{x+4}[/tex] ----> [tex]x\neq -4[/tex]

Part 3)  [tex]f(x)=x(x+4)[/tex] ----> All real numbers

Part 4) [tex]f(x)=\frac{4}{x^2+8x+16}[/tex] ----> [tex]x\neq -4[/tex]

Step-by-step explanation:

we know that

The domain of a function is the set of all possible values of x

Part 1) we have

[tex]f(x)=\frac{x+4}{x}[/tex]

we know that

In a quotient the denominator cannot be equal to zero

so

For the value of x=0 the function is not defined

therefore

The domain is

[tex]x\neq 0[/tex]

Part 2) we have

[tex]f(x)=\frac{x}{x+4}[/tex]

we know that

In a quotient the denominator cannot be equal to zero

so

For the value of x=-4 the function is not defined

therefore

The domain is

[tex]x\neq -4[/tex]

Part 3) we have

[tex]f(x)=x(x+4)[/tex]

Applying the distributive property

[tex]f*(x)=x^2+4x[/tex]

This is a vertical parabola open upward

The function is defined by all the values of x

therefore

The domain is all real numbers

Part 4) we have

[tex]f(x)=\frac{4}{x^2+8x+16}[/tex]

we know that

In a quotient the denominator cannot be equal to zero

so

Equate the denominator to zero

[tex]x^2+8x+16=0[/tex]

Remember that

[tex]x^2+8x+16=(x+4)^2[/tex]

([tex]x+4)^2=0[/tex]

The solution is x=-4

so

For the value of x=-4 the function is not defined

therefore

The domain is

[tex]x\neq -4[/tex]