Respuesta :

Answer:

[tex]y'=\ln(4)\frac{4^{\ln(x)}}{x}[/tex]

Step-by-step explanation:

[tex]y=4^{\ln(x)}[/tex]

Take natural log of both sides:

[tex]\ln(y)=\ln(4^{\ln(x)})[/tex]

Use power rule of logarithms:

[tex]\ln(y)=\ln(x)\cdot\ln(4)[/tex]

Let's differentiate.

[tex]\frac{y'}{y}=\frac{1}{x} \cdot \ln(4)[/tex]

I applied chain rule on the left side and I apply constant multiple rule to the right side.

Let's multiply both sides by [tex]y[/tex]:

[tex]y'=y \cdot \frac{1}{x} \cdot \ln(4)[/tex]

We started with [tex]y=4^{\ln(x)}[/tex] so let's make that replacement:

[tex]y'=4^{\ln(x)} \cdot \frac{1}{x} \cdot \ln(4)[/tex]

Let's simplify it a bit:

[tex]y'=\ln(4)\frac{4^{\ln(x)}}{x}[/tex]

Answer:

dy/dx = (4^lnx)(ln4)/x

Step-by-step explanation:

lny = (lnx)ln4

(1/y)y' = (ln4)/x

y' = y(ln4)/x

y' = (4^lnx)(ln4)/x