HELP ASAP PLEASE!!!!

Consider the first four terms of the sequence below.

-3, -12, -48, -192, . . .

What is the 8th term of this sequence?

A.
-49,152

B.
-12,288

C.
-196,608

D.
-768

Respuesta :

Answer:

A = -49,152

Step-by-step explanation:

The sequence -3, -12, -48, -192 have a geometric Progression.

How did I know that?

The common ratio is gotten by diving the preceding value by a previous one. Such that:

r : -12 / -3 = 4

r : -48 / -12 = 4

Which ever one you pick, gives thesame commonn ration "r" as 4.

Lets proceed.

Geometric Progression (GP) is defined as:

GP: ar^n-1

Where "a" is the first term -3

r is the common ration = 4

n is the number of term = 8th

To solve for the 8th term!

= ar^ 8-1

= ar^7

= -3 * 4 ^ 7

= -3 * 16384

= -49152

Enjoy! Maths is fun!

Answer:

A

Step-by-step explanation:

r = -12/-3 = 4

(-3)4^(8-1)

(-3)(4⁷)

-49152